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LETTER TO THE EDITOR 

The existence of energy gaps for three-dimensional systems 
without long-range order 

A Nenciut and G Nenciut 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, SU-141980, 
Dubna, USSR 

Received 6 January 1981 

Abstract. The existence of energy gaps in the electronic spectrum for three-dimensional 
systems having short-range order but without long-range order, is proved. 

The problem of the existence of the forbidden gaps in the energy spectrum of electrons 
in systems without long-range order is an old one (Lieb and Mattis 1966, Mott and 
Davis 1979). While for completely disordered systems one cannot expect to have 
forbidden gaps, the general belief is that the existence of energy gaps depends to a great 
degree on the short-range order and it is generally independent of the degree of 
long-range order. For one-dimensional systems, this has been proved by Borland 
(1961) but to our best knowledge no proof exists for higher dimensional systems. The 
aim of this Letter is to provide such a proof. The surprising fact is that the proof is quite 
simple, almost trivial. In fact, after the completion of this work, we became aware of the 
fact that the basic ideas underlying the two steps of the proof were known3 for a long 
time: 

(i) the ‘shift’ of the disorder from the potential energy to the kinetic energy was used 
many years ago by Gubanov (1954, 1955); 

(ii) the control of perturbation theory can be achieved by the general theory of 
singular perturbations (Kato 1966). 

We shall write the proof for three-dimensional systems, but in fact the proof does 
not depend on the dimension of the system. 

Let V ( x )  be a periodic function and 

Ho = - ( h 2 / 2 m ) A ,  + V(X) T + V (1) 

be the Hamiltonian representing the ‘ideal’ periodic system. Concerning V, we shall 
suppose that 

Condition (2) is usual in nonrelativistic quantum mechanics and is a rather weak one; in 
particular, it is enough that (in three dimensions) V ( x )  is square integrable on the unit 
cell (Reed and Simon 1978, Th. XI11 96). 

t Permanent address: Central Institute of Physics, P O  Box 5206,  Bucharest, Romania 
$ W e  are grateful to Drs L Banyai and N Angelescu for pointing out to us the relevant literature 
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i = 1, 2, 3 be a C 3  vector function with the property that 

We shall represent disordered systems by the following type of Hamiltonian 

HE = -h2Ax/2m + V ( x  + E g ( x ) )  = T + V, (4) 

where E is a positive number. The periodic system is recovered by E = 0. In general, for 
small E there is still a short-range order, but at long distances the order is lost, the 
characteristic length being of order a / & ,  where a is the linear dimension of the unit cell. 
Our result is: 

Theorem 1. Suppose that [a, b ]  c R is in the resolvent set of Ho, [a, b ]  c p (Ho). Then for 
sufficiently small E ,  there exist a s a ,  < b, s b such that [a,, b,] c p(H , ) .  Moreover, 

lim a, = a 

lim b, = b. 

E + O  

E + O  

Proof of Theorem 1. Before mentioning the technicalities, let us give the main ideas. The 
difficulty is due to the fact that the problem does not have a small parameter on which a 
perturbation approach could be based. Then, in the first step, we shall shift the 
disorder, by a change of variable, from the potential energy to the kinetic energy. In the 
new representation, the kinetic energy can be written as the sum of the usual term 
-h2A/2m, and a perturbation. The price is that although the perturbation term 
contains E as a factor, it is rather singular. The second step is to show that this singular 
perturbation can be controlled. 
Step 1. There exists E O >  0 such that for 0 < E  s E O  

J,  (x) = detlS, + E a g i ( x ) / a x j l a  i. (6) 

Then one can define the following unitary operator U, : L 2 ( R 3 )  + L2(R3) 

By direct computation 
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where D, has the following form 

a2 3 a 
Aii(x) -+ Bi(x)  -+ axi C(x)] axi axj j=‘ 

and all coefficients appearing in (10) are uniformly bounded with respect to x E R3 and 
E E (0, .so), by a constant K,  
Step 2, From the functional calculus, one has for z E Rd = { z  E 63 1 Re z 6 - d < 0 )  

From (10) and (11) it follows that for O <  E < E O  and z E R(d)  

The condition (2) assures the existence of do < 03 such that for z E R (do) 

1) V (  T - z)-’ll 6 (13) 

Then using the identity 

1 =-[ 1 1 + v-] 1 
T + V - z  T - z  T - z  

one obtains for 0 < E < E O ,  z E R(do) 

and the use of Theorem VI 5.12 from Kato’s book (1966) finishes the proof of the 
theorem. 

Remark. Even without relying on the general theorems of perturbation theory, the 
proof of Theorem 1 is immediate. Suppose E < [2k(do)]-’. The following formula 

1 - - 1 
T+V+ED, -Z  T + V - t  

I)-’ 1 
T +  V-ZO T +  V - z  

~ + E ( z ~ - z )   ED )-ID, ( “ T + V - z o  

shows that (T  + V + ED, - z)-’ exists for all z E p (  T + V )  satisfying 

In particular, if A is the middle of a gap of magnitude AE then A E p ( H , )  if 
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Applied to concrete cases, the inequality (17) gives a (very rough) estimate of E ,  for 
which a forbidden gap still exists. 
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